Diastereomer-dependent substrate reduction properties of a dinitrogenase containing 1-fluorohomocitrate in the iron-molybdenum cofactor.
نویسندگان
چکیده
In vitro synthesis of the iron-molybdenum cofactor (FeMo-co) of dinitrogenase using homocitrate and its analogs allows the formation of modified forms of FeMo-co that show altered substrate specificities (N2, acetylene, cyanide, or proton reduction) of nitrogenase [reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolyzing), EC 1.18.6.1]. The (1R,2S)-threo- and (1S,2S)-erythro-fluorinated diastereomers of homocitrate have been incorporated in vitro into dinitrogenase in place of homocitrate. Dinitrogenase activated with FeMo-co synthesized using threo-fluorohomocitrate reduces protons, cyanide, and acetylene but cannot reduce N2. In addition, proton reduction is inhibited by carbon monoxide (CO), a characteristic of dinitrogenase from NifV- mutants. Dinitrogenase activated with FeMo-co synthesized using erythro-fluorohomocitrate reduces protons, cyanide, acetylene, and N2. In this case proton reduction is not inhibited by CO, a characteristic of the wild-type enzyme. Cyanide reduction properties of dinitrogenase activated with FeMo-co containing either fluorohomocitrate diastereomer are similar, and CO strongly inhibits cyanide reduction. Dinitrogenases activated with FeMo-co containing homocitrate analogs with a hydroxyl group on the C-1 position are much less susceptible to CO inhibition of cyanide reduction. However, proton and cyanide reduction by dinitrogenase containing FeMo-co activated with (1R,2S) threo-isocitrate is only one-third that of dinitrogenase activated with the racemic mixture of -isocitrate and shows strong CO inhibition of substrate reduction. These results suggest that CO inhibition of proton and cyanide reduction occurs when the hydroxyl group on the C-1 position of analogs is "trans" to the C-2 carboxyl group (i.e., in the threo conformation). When racemic mixtures of these analogs are used in the system, it seems that the erythro form is preferentially incorporated into dinitrogenase. Finally, carbonyl sulfide inhibition of substrate reduction by dinitrogenase is dependent on the homocitrate analog incorporated into FeMo-co.
منابع مشابه
Plausible structure of the iron-molybdenum cofactor of nitrogenase.
A plausible structure of the iron-molybdenum cofactor of nitrogenase [reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolyzing), EC 1.18.6.1] is presented based on altered substrate reduction properties of dinitrogenase containing homocitrate analogs within the cofactor. Alterations on each carbon of the four-carbon homocitrate backbone were correlated with altered substrate reduction prop...
متن کاملIn vitro synthesis of the iron-molybdenum cofactor of nitrogenase.
Molybdate- and ATP-dependent in vitro synthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase requires the protein products of at least the nifB, nifN, and nifE genes. Extracts of FeMo-co-negative mutants of Klebsiella pneumoniae and Azotobacter vinelandii with lesions in different genes can be complemented for FeMo-co synthesis. Both K. pneumoniae and A. vinelandii dinitrogenase (co...
متن کاملApoNifH functions in iron-molybdenum cofactor synthesis and apodinitrogenase maturation.
NifH (dinitrogenase reductase) has three important roles in the nitrogenase enzyme system. In addition to its role as the obligate electron donor to dinitrogenase, NifH is required for the iron-molybdenum cofactor (FeMo-co) synthesis and apodinitrogenase maturation. We have investigated the requirement of the Fe-S cluster of NifH for these processes by preparing apoNifH. The 4Fe-4S cluster of N...
متن کاملN2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase.
N2 fixation by Streptomyces thermoautotrophicus follows the equation N2 + 4-12MgATP + 8H+ + 8e- --> 2NH3 + H2 + 4-12MgADP + 4-12Pi and exhibits features which are not obvious in the diazotrophic bacteria studied so far. The reaction is coupled to the oxidation of carbon monoxide (CO) by a molybdenum-containing CO dehydrogenase that transfers the electrons derived from CO oxidation to O2, thereb...
متن کاملPurification and characterization of the nifN and nifE gene products from Azotobacter vinelandii mutant UW45.
The nifN and -E gene products are involved in the synthesis of the iron-molybdenum cofactor of dinitrogenase, the enzyme responsible for the reduction of dinitrogen to ammonia. By using the in vitro iron-molybdenum cofactor biosynthesis assay, we have followed the purification of these gene products 450-fold to greater than 95% purity. An overall recovery of 20% was obtained with the purified p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 87 17 شماره
صفحات -
تاریخ انتشار 1990